This document describes the following product:

- **P-616.3C**
 Parallel-kinematic NanoCube®
 XYZ nanopositioner,
 100 µm × 100 µm × 100 µm travel range,
 capacitive sensors
The following company names and brands are registered trademarks of Physik Instrumente (PI) GmbH & Co. KG:

PI®, NanoCube®, PICMA®, PILine®, NEXLINE®, PiezoWalk®, NEXACT®, Picoactuator®, PInano®, PI Mag®, Q-Motion®

The products described in this document are in part protected by the following patents:

German patent no. 10021919C2
German patent no. 10234787C1
German patent no. 10348836B3
German patent no. 102005015405B3
German patent no. 102007011652B4
US patent no. 7,449,077
Japanese patent no. 4667863
Chinese patent no. ZL03813218.4

© 2018 Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe, Germany. The text, photographs and drawings in this manual are protected by copyright. With regard thereto, Physik Instrumente (PI) GmbH & Co. KG retains all the rights. The use of any text, images and drawings is permitted only in part and only when indicating the source.

Original instructions
First printing: 17.01.2018
Document number: PZ268D, KSch, Version 1.0.2

Subject to change without notice. This manual is superseded by any new release. The latest release is available for download (p. 3) on our website.
Contents

1 About this Document

1.1 Objective and Target Audience of this User Manual
1.2 Symbols and Typographic Conventions
1.3 Figures
1.4 Other Applicable Documents
1.5 Downloading Manuals

2 Safety

2.1 Intended Use
2.2 General Safety Instructions
2.3 Organizational Measures

3 Product Description

3.1 Product View
3.2 Product Labeling
3.3 Scope of Delivery
3.4 Accessories
3.5 Suitable Electronics
3.6 Technical Features
 3.6.1 PICMA® Piezo Actuators
 3.6.2 Flexure Guides
 3.6.3 Capacitive Sensors

4 Unpacking

5 Installation

5.1 General Notes on Installation
5.2 Connecting the P-616 to the Protective Earth Conductor
5.3 Mounting the P-616
5.4 Affixing the Load
5.5 Connecting the P-616 to the Electronics

6 Startup and Operation

6.1 General Notes on Startup and Operation
6.2 Operating the P-616
6.3 Discharging the P-616
7 Maintenance

7.1 General Notes on Maintenance ... 27
7.2 Cleaning the P-616 .. 27

8 Troubleshooting .. 29

9 Customer Service ... 31

10 Technical Data ... 33

10.1 Specifications.. 33
10.1.1 Data Table.. 33
10.1.2 Maximum Ratings .. 34
10.1.3 Ambient Conditions and Classifications ... 35
10.2 Dimensions .. 36
10.3 Torque for Stainless Steel Screws (A2-70) ... 37
10.4 Pin Assignment ... 37

11 Old Equipment Disposal ... 39

12 EU Declaration of Conformity .. 41
1 About this Document

In this Chapter

Objective and Target Audience of this User Manual ... 1
Symbols and Typographic Conventions .. 1
Figures .. 2
Other Applicable Documents .. 2
Downloading Manuals .. 3

1.1 Objective and Target Audience of this User Manual

This user manual contains the information needed for the intended use of the P-616.
Basic knowledge of servo systems, drive technologies, and suitable safety measures is assumed.

1.2 Symbols and Typographic Conventions

The following symbols and typographic conventions are used in this user manual:

CAUTION

Dangerous situation
If not avoided, the dangerous situation will result in minor injury.
➢ Actions to take to avoid the situation.

NOTICE

Dangerous situation
If not avoided, the dangerous situation will result in damage to the equipment.
➢ Actions to take to avoid the situation.

INFORMATION

Information for easier handling, tricks, tips, etc.
1. About this Document

<table>
<thead>
<tr>
<th>Symbol/Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Action consisting of several steps whose sequential order must be observed</td>
</tr>
<tr>
<td>2.</td>
<td>Action consisting of one or several steps whose sequential order is irrelevant</td>
</tr>
<tr>
<td>p. 5</td>
<td>Cross-reference to page 5</td>
</tr>
<tr>
<td>RS-232</td>
<td>Labeling of an operating element on the product (example: socket of the RS-232 interface)</td>
</tr>
</tbody>
</table>

Warning signs affixed to the product that refer to detailed information in this manual.

1.3 Figures

For better understandability, the colors, proportions, and degree of detail in illustrations can deviate from the actual circumstances. Photographic illustrations may also differ and must not be seen as guaranteed properties.

1.4 Other Applicable Documents

The devices and software tools that are mentioned in this documentation are described in their own manuals.

The latest versions of the user manuals are available for download (p. 3) on our website.

<table>
<thead>
<tr>
<th>Product</th>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-727 Digital multi-channel piezo controller</td>
<td>E727T0005 user documentation</td>
</tr>
<tr>
<td>PIMikroMove</td>
<td>SM148E software manual</td>
</tr>
<tr>
<td>P-5xx / P-6xx / P-7xx piezo positioning systems</td>
<td>PZ240EK short instructions</td>
</tr>
</tbody>
</table>
1.5 Downloading Manuals

INFORMATION

If a manual is missing or problems occur with downloading:

- Contact our customer service department (p. 31).

INFORMATION

For products that are supplied with software (CD in the scope of delivery), access to the manuals is protected by a password. Protected content is only displayed on the website after entering the access data.

You need the product CD to get the access data.

For products with CD: Get access data

1. Insert the product CD into the PC drive.
2. Switch to the Manuals directory on the CD.
3. In the Manuals directory, open the Release News (file including `releasenews` in the file name).
4. Get the access data for downloading protected content in the "User login for software download" section of the Release News. Possible methods for getting:
 - Link to a page for registering and requesting the access data
 - Direct input of user name and password
5. If the access data needs to be requested via a registration page:
 a) Follow the link in the Release News.
 b) Enter the required information in the browser window.
 c) Click **Show login data** in the browser window.
 d) Note the user name and password shown in the browser window.

Downloading Manuals

If you have requested access data for protected contents via a registration page (see above):

- Click the links in the browser window to change to the content for your product and login in using the access data that you received.

General procedure:

1. Open the website www.pi.ws.
2. If access to the manuals is protected by a password:
 a) Click **Login**.
 b) Log in with the user name and password.
3. Click **Search**.
4. Enter the product number up to the period (e.g., P-882) or the product family (e.g., PICMA® Bender) into the search field.

5. Click **Start search** or press the **Enter** key.

6. Open the corresponding product detail page in the list of search results:
 a) If necessary: Scroll down the list.
 b) If necessary: Click **Load more results** at the bottom of the list.
 c) Click the corresponding product in the list.

7. Scroll down to the **Downloads** section on the product detail page.
 The manuals are shown under **Documentation**.

8. Click the desired manual and save it to the hard disk of your PC or to a data storage medium.
2 Safety

In this Chapter

Intended Use .. 5
General Safety Instructions ... 5
Organizational Measures .. 6

2.1 Intended Use

The P-616 is a laboratory device as defined by DIN EN 61010-1. It is intended for indoor use and
use in an environment that is free of dirt, oil, and lubricants.

In accordance with its design, the P-616 is intended for fine positioning in three axes at right
angles to each other with one center of rotation (parallel kinematics). The P-616 is suitable for
fast precision motion of smaller objects. It can be mounted in any orientation.

The intended use of the P-616 is only possible in conjunction with suitable electronics (p. 11)
available from PI. The electronics are not included in the scope of delivery of the P-616.

The electronics must provide the required operating voltages. For closed-loop operation, it
must be in a position to read out and process the signals of the position sensors.

2.2 General Safety Instructions

The P-616 is built according to state-of-the-art technology and recognized safety standards.
Improper use can result in personal injury and/or damage to the P-616.

- Only use the P-616 for its intended purpose, and only use it if it is in a good working
 order.
- Read the user manual.
- Immediately eliminate any faults and malfunctions that are likely to affect safety.

The operator is responsible for the correct installation and operation of the P-616.

The P-616 is driven by piezo actuators. Temperature changes and compressive stresses can
induce charges in piezo actuators. After disconnection from the electronics, piezo actuators can
remain charged for several hours. Touching or short-circuiting the contacts in the connector of
the P-616 can lead to minor injuries from electric shock. The piezo actuators can be destroyed
by an abrupt contraction.

- Do not open the P-616.
2 Safety

- Discharge the piezo actuators of the stage before installation:
 Connect the stage to the switched-off PI controller, which is equipped with an internal discharge resistor.
- Do not pull the connector out of the electronics during operation.

For stages with Sub-D connector:

Touching the contacts in the connector can lead to an electric shock (max. 130 V DC) and minor injuries.
- Do not touch the contacts in the connector.
- Secure the connector of the stage with screws against being pulled out of the controller.

If a protective earth conductor is not or not properly connected, dangerous touch voltages can occur on the P-616 in the case of malfunction or failure of the system. If touch voltages exist, touching the P-616 can result in minor injuries from electric shock.
- Connect the P-616 to a protective earth conductor (p. 16) before startup.
- Do not remove the protective earth conductor during operation.
- If the protective earth conductor has to be removed temporarily (e.g., in the case of modifications), reconnect the P-616 to the protective earth conductor before starting it up again.

Mechanical forces can damage or misalign the P-616.
- Avoid impacts that affect the P-616.
- Do not drop the P-616.
- Do not exceed the maximum permissible stress and load capacities according to the specifications (p. 33).
- Only hold the P-616 by the holding surfaces of the base body (p. 13).

The P-616 is maintenance-free and achieves its positioning accuracy as a result of the optimum alignment of mechanical components and piezo actuators. Loosened screws cause a loss in positioning accuracy.
- Only loosen screws according to the instructions in this manual.
- Do not open the P-616.

2.3 Organizational Measures

User manual
- Always keep this user manual available with the P-616.
 The latest versions of the user manuals are available for download (p. 3) on our website.
- Add all information from the manufacturer to the user manual, for example supplements or technical notes.
2 Safety

➢ If you give the P-616 to other users, also include this user manual as well as other relevant information provided by the manufacturer.

➢ Only use the device on the basis of the complete user manual. Missing information due to an incomplete user manual can result in minor injury and damage to equipment.

➢ Only install and operate the P-616 after you have read and understood this user manual.

Personnel qualification

The P-616 may only be installed, started up, operated, maintained, and cleaned by authorized and appropriately qualified personnel.
3 Product Description

In this Chapter

Product View .. 9
Product Labeling .. 10
Scope of Delivery ... 11
Accessories ... 11
Suitable Electronics .. 11
Technical Features ... 12

3.1 Product View

Figure 1: P-616

1 Base body
2 M2 hole for mounting the load, depth 2.5 mm (3 × 2 M2 holes)
3 XYZ mounting platform (moving part of the P-616, also designated “motion platform”)
4 Countersunk holes for mounting onto a surface (2×)
5 Cable exit (supply voltage, sensor)
6 M4 hole for protective earth connection
The arrows each represent the positive direction of motion.
3.2 Product Labeling

<table>
<thead>
<tr>
<th>Labeling</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-616.3C</td>
<td>Product name</td>
</tr>
<tr>
<td>117031266</td>
<td>Serial number (example), individual for each P-616 Meanings of the places (counting from left): 1 = internal information, 2 and 3 = year of manufacture, 4 to 9 = consecutive numbers</td>
</tr>
<tr>
<td>NanoCube®</td>
<td>Brand name</td>
</tr>
<tr>
<td>Country of origin: Germany</td>
<td>Country of origin</td>
</tr>
<tr>
<td>PI</td>
<td>Manufacturer’s logo</td>
</tr>
<tr>
<td>!</td>
<td>Warning sign "Observe manual!"</td>
</tr>
<tr>
<td></td>
<td>Old equipment disposal (p. 39)</td>
</tr>
<tr>
<td>WWW.PI.WS</td>
<td>Manufacturer’s address (website)</td>
</tr>
<tr>
<td>CE</td>
<td>CE conformity mark</td>
</tr>
<tr>
<td></td>
<td>Symbol for the protective earth conductor, marks the protective earth connection of the P-616 (p. 16)</td>
</tr>
</tbody>
</table>

Figure 2: "Residual Voltage" warning sign on the connector of the P-616

Warning sign "Residual Voltage": Indicates risk of electric shock (p. 5)
3.3 **Scope of Delivery**

<table>
<thead>
<tr>
<th>Product number</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-616</td>
<td>Parallel-kinematic NanoCube® XYZ nanopositioner, 100 µm × 100 µm × 100 µm travel range, capacitive sensors</td>
</tr>
</tbody>
</table>
| 000036450 | M4 screw set for protective earth, consisting of:
| | ▪ 1 flat-head screw with cross recess, M4x8, ISO 7045
| | ▪ 2 safety washers
| | ▪ 2 flat washers |
| P616T0004 | TN for unpacking the P-616 |
| PZ240EK | Short instructions for piezo positioning systems |

Only when ordering a system with analog controller or amplifier*

<table>
<thead>
<tr>
<th>Product number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-518.I3</td>
<td>Interface module, 3 channels, TCP/IP, USB, and RS-232 interfaces</td>
</tr>
<tr>
<td>E-515.03</td>
<td>Display module for piezo voltage and displacement, 3 channels</td>
</tr>
</tbody>
</table>

➢ To order, contact our customer service department (p. 31).

3.5 **Suitable Electronics**

The P-616 must be connected to suitable electronics. The following devices from PI are suitable for operation of the P-616:

<table>
<thead>
<tr>
<th>Product number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-727.3CD</td>
<td>Digital multi-channel piezo controller, 3 axes, -30 to 130 V, capacitive sensors, sub-D 25W3 socket</td>
</tr>
<tr>
<td>E-727.3CDA</td>
<td>Digital multi-channel piezo controller, 3 axes, -30 to 130 V, capacitive sensors, Sub-D 25W3 socket, analog inputs</td>
</tr>
</tbody>
</table>
| E-500.00 / E-501.00 | Modular piezo controller, consisting of:
| | ▪ E-503.00 piezo amplifier module
| | ▪ E-509.C3A sensor / servo controller module
| | Optional: E-518 interface module and E-515 display module |
| E-663.00 | Piezo amplifier, 3 channels, -20 to 120 V, benchtop device |

* E-500.00 / E-501.00 and E-663.00 (p. 11)
The P-895.3DLC adapter cable is necessary for the analog controller and/or E-500/E-501 and E-663 drivers, available as optional accessories (p. 11).

PC software is included in the scope of delivery of the controllers from PI. The operation of the controllers is described in the corresponding user manuals.

3.6 Technical Features

3.6.1 PICMA® Piezo Actuators
P-616 stages are driven by PICMA® piezo actuators. PICMA® actuators have all-ceramic insulation and are therefore far superior to conventional actuators in respect to performance and lifetime. The monolithic piezoceramic block is protected against humidity and failure due to increased leakage current by a ceramic insulation layer. In this way, an especially high reliability is achieved even under extreme ambient conditions. In contrast to motorized drives, there are no rotating parts or friction. The piezo actuators are therefore free of backlash, maintenance, and wear.

3.6.2 Flexure Guides
P-616 stages have flexure guides (flexures) for frictionless motion and high guiding accuracy. A flexure guide is an element which is free from static and sliding friction. It is based on the elastic deformation (bending) of a solid (e.g., steel) and does not have any rolling or sliding parts. Flexure elements have a high stiffness and load capacity. Flexure guides are maintenance and wear free. They are 100 % vacuum compatible, function in a wide temperature range and do not require any lubricants.

3.6.3 Capacitive Sensors
Capacitive sensors measure the position directly on the motion platform (direct metrology) and work without contact. Neither friction nor hysteresis interferes with the motion, which allows excellent linearity values to be achieved together with the high position resolution. In conjunction with suitable electronics, capacitive sensors achieve the best resolution, stability, and bandwidth.
4 Unpacking

NOTICE

Damage to the P-616 due to incorrect handling!
Impermissible mechanical stress on the cover of the bottom side of the P-616 and the XYZ mounting platform can damage the P-616 and lead to loss of accuracy.

- Avoid mechanical stress on the bottom side of the P-616 and the XYZ mounting platform, see figure below.

1. Unpack the P-616 with care.
 - Do not exert any force onto the following points:
 - the cover of the bottom side of the P-616
 - the surfaces of the XYZ mounting platform

2. Compare the contents with the items listed in the contract and the packing list.

3. Inspect the contents for signs of damage. If there is any sign of damage or missing parts, contact PI immediately.

4. Keep all packaging materials in case the product needs to be returned.
5 Installation

In this Chapter
General Notes on Installation ... 15
Connecting the P-616 to the Protective Earth Conductor 16
Mounting the P-616 .. 17
Affixing the Load .. 19
Connecting the P-616 to the Electronics ... 22

5.1 General Notes on Installation

CAUTION

Dangerous voltage and residual charge on piezo actuators!
The P-616 is driven by piezo actuators. Temperature changes and compressive stresses can induce charges in piezo actuators. After disconnection from the electronics, piezo actuators can remain charged for several hours. Touching or short-circuiting the contacts in the connector of the P-616 can lead to minor injuries from electric shock. The piezo actuators can be destroyed by an abrupt contraction.

➢ Do not open the P-616.
➢ Discharge the piezo actuators of the stage before installation:
 Connect the stage to the switched-off PI controller, which is equipped with an internal discharge resistor.
➢ Do not pull the connector out of the electronics during operation.

For stages with Sub-D connector:

Touching the contacts in the connector can lead to an electric shock (max. 130 V DC) and minor injuries.

➢ Do not touch the contacts in the connector.
➢ Secure the connector of the stage with screws against being pulled out of the controller.

NOTICE

Mechanical overload from incorrect handling!
Impermissible mechanical loading of the motion platform as well as certain surfaces of the P-616 can cause damage to the piezo actuators, sensors and flexures of the P-616 as well as loss of accuracy. In addition, the P-616 can be damaged by tensile forces on the cable exit and bending of the connecting cable.

➢ Hold the P-616 by its base body (p. 9) only.
➢ Avoid tensile forces on the cable exit and do not bend the cable.
NOTICE

Damage due to unsuitable cables!
Unsuitable cables can damage the P-616 and the electronics.
- Only use cables provided by PI for connecting the P-616 to the electronics.

NOTICE

Damage due to improper mounting!
Improper mounting of the P-616 or incorrectly mounted parts can damage the P-616.
- Only mount the P-616 and the loads on the mounting fixtures (holes) intended for this purpose.

NOTICE

Damage due to incorrectly tightened screws!
Incorrectly tightened screws can cause damage.
- Observe the torque range (p. 37) given for the screws used during installation.

INFORMATION

Extended cables can reduce the positioning accuracy of the P-616 or affect the sensor processing by the electronics.
- If you need longer cables, contact our customer service department (p. 31).

5.2 Connecting the P-616 to the Protective Earth Conductor

INFORMATION

- Observe the applicable standards for connecting the protective earth conductor.

The P-616 has an M4 hole for mounting the protective earth conductor. This hole is marked with the symbol for the protective earth conductor (see "Dimensions" (p. 36)).

Requirements

- You have read and understood the general notes on installation (p. 15).
- The P-616 is not connected to the electronics.

Tools and accessories

- Suitable protective earth conductor: Cross-sectional area of the cable ≥ 0.75 mm²
- Supplied M4 protective earth screw set (p. 11) for connecting the protective earth conductor
- Suitable screwdriver
5 Installation

Figure 4: Connecting the protective earth conductor (profile view)

1 Base body of the P-616
2 Flat washer
3 Safety washer
4 Screw
5 Cable lug
6 Protective earth conductor

Connecting the P-616 to the protective earth conductor

1. If necessary, attach a suitable cable lug to the protective earth conductor.
2. Use the M4 screw (together with the washers and self-locking washers) to affix the cable lug of the protective earth conductor to the protective earth connection of the P-616 as shown in the profile view.
3. Tighten the M4 screw with a torque of 1.2 Nm to 1.5 Nm.
4. Make sure that the contact resistance at all connection points relevant for connecting the protective earth conductor is <0.1 Ω at 25 A.

5.3 Mounting the P-616

NOTICE

Warping of the P-616 due to mounting on uneven surfaces!
Mounting the P-616 on an uneven surface can warp the P-616. Warping reduces the accuracy.

- Mount the P-616 onto an even surface. The recommended flatness of the surface is ≤100 µm.
- For applications with large temperature changes: Only mount the P-616 on surfaces that have the same or similar thermal expansion properties as the P-616.

NOTICE

Protruding screw heads!
Protruding screw heads can damage the P-616.

- Ensure that the screw heads do not protrude from countersunk holes so that they do not interfere with the stage motion.
5 Installation

Figure 5: Holes for the locating pins on the bottom side of the P-616 for aligning the P-616

Figure 6: Countersunk holes, Ø 3.2 mm / Ø 6.5 mm for mounting the P-616

Requirements

✓ You have read and understood the general notes on installation (p. 15).

Tools and accessories

➢ For the dimensions of the P-616 and the position and depth of the holes, see "Dimensions" (p. 36).
 ▪ Optional: 2 locating pins (e.g., 2m6 or 2h6) of suitable length, for holes Ø 2 mm H7
 ▪ 2 M3 screws of suitable length, at least M3x25
 ▪ Suitable screwdriver

Mounting the P-616

1. Position the stage on an even surface. Optional: Align the P-616 on the surface with the locating pins.
2. Insert the screws into the countersunk holes in the base body of the P-616 from above.
3. Tighten the screws.

 Maximum torque: 1.1 Nm
5.4 Affixing the Load

NOTICE

Mechanical overload due to high torques and high loads!
When affixing the load, high torques and high loads can overload the motion platform of the P-616. Mechanical overload can cause damage to the piezo actuators, sensors, and flexures of the P-616 and lead to loss in accuracy.

- Observe the torque range (p. 37) given for the screws used during installation.
- Avoid torques >50 Ncm on the motion platform.
- Do not exceed the maximum permissible stress and load capacities according to the specifications (p. 33).

NOTICE

Warping of the P-616 due to affixing of loads with uneven contact surface!
Affixing loads with an uneven contact surface can warp the P-616. Warping reduces the accuracy.

- Only affix loads on the P-616 whose contact surface with the motion platform of the stage has a flatness of at least 100 μm.
- For applications with large temperature changes:
 Only affix loads to the P-616 that have the same or similar thermal expansion properties as the P-616.

NOTICE

Center of load at unsuitable position!
If the center of load is located too far away from the center of the motion platform (e.g., tall loads and unwanted lever effect), the P-616 can be damaged by high strain on the flexure guides, high torques, and oscillation, especially when operated dynamically.

- If the center of the load to be affixed is too far above or to the side of the motion platform,
 adjust the controller settings before startup or contact our customer service department (p. 31).

NOTICE

Screws that are too long!
The P-616 can be damaged by screws that are too long.

- Note the depth of the mounting holes in the motion platform (p. 36).
- Only use screws of the correct length for the respective mounting holes.

INFORMATION

The positive direction of motion of the axes is given in the product view (p. 9).
5 Installation

Center of load at the optimum position:

Figure 7: Example of an optimally placed load

1 Load center

Center of load at an unsuitable position:

Figure 8: Tall load and center of load too far above the motion platform
5 Installation

Figure 9: Unwanted lever effect and center of load on the side of the motion platform

Figure 10: Holes for affixing the load

Requirements

✓ You have read and understood the general notes on installation (p. 15).

Tools and accessories

▪ M2 screws of suitable length, see "Dimensions" (p. 36)
▪ Suitable tools

Affixing the load

➢ Only affix loads with suitable screws to the threaded holes intended for this purpose:
 – Pay attention to the specified torque range (p. 37) for the screws.
 – Avoid torques >50 Ncm on the motion platform.
➢ Affix the load so that its center is at the middle of the XYZ mounting platform.
5.5 Connecting the P-616 to the Electronics

INFORMATION

Systems consisting of a P-616 and electronics are calibrated at the factory to achieve optimum performance.

- Pay attention to the assignment of the axes to the channels that are specified on the calibration label of the electronics.

Requirements

- You have read and understood the general notes on installation (p. 15).
- You have installed suitable electronics (p. 11).
- You have read and understood the user manual of the electronics.
- The electronics are switched off, i.e., not connected to the power supply.

Tools and accessories

- When connecting to electronics with LEMO sockets: P-895.3DLC (p. 11) adapter cable

Connecting the P-616 to the E-727 controller

1. Plug the connector of the P-616 into the corresponding socket of the controller (see user manual of the controller).
2. Use the integrated screws to secure the connection against accidental disconnection.

Connect the P-616 to the E-50x modules or E-663.00 piezo amplifier with the P-895.3DLC adapter cable

1. Connect the Sub-D 25W3 (m) connector of the P-616 to the Sub-D 25W3 (f) connection of the adapter cable.
2. Connect the piezo connections of the adapter cable to the piezo connection of the E-503.00 or E-663.00 piezo amplifier module as follows.
 - PZT1 to PZT for channel 1 (CH1)
 - PZT2 to PZT for channel 2 (CH2)
 - PZT3 to PZT for channel 3 (CH3)
3. When connecting to the E-50x modules: Connect the sensor connections of the adapter cable to the E-509.C3A control module as follows:
 - T1 to T for channel 1 (SERVO 1)
 - P1 to P for channel 1 (SERVO 1)
 - T2 to T for channel 2 (SERVO 2)
 - P2 to P for channel 2 (SERVO 2)
 - T3 to T for channel 3 (SERVO 3)
 - P3 to P for channel 3 (SERVO 3)
6 Startup and Operation

In this Chapter

General Notes on Startup and Operation ... 23
Operating the P-616 ... 25
Discharging the P-616 ... 25

6.1 General Notes on Startup and Operation

CAUTION

Risk of electric shock if the protective earth conductor is not connected!
If a protective earth conductor is not or not properly connected, dangerous touch voltages can occur on the P-616 in the case of malfunction or failure of the system. If touch voltages exist, touching the P-616 can result in minor injuries from electric shock.

- Connect the P-616 to a protective earth conductor (p. 16) before startup.
- Do not remove the protective earth conductor during operation.
- If the protective earth conductor has to be removed temporarily (e.g., in the case of modifications), reconnect the P-616 to the protective earth conductor before starting it up again.

NOTICE

Destruction of the piezo actuator due to electric flashovers!
Using the P-616 in environments that increase the electrical conductivity can lead to the destruction of the piezo actuator by electric flashovers. Electric flashovers can be caused by moisture, high humidity, liquids, and conductive materials (e.g., metal dust). In addition, electric flashovers can also occur in certain air pressure ranges due to the increased conductivity of the air.

- Avoid operating the P-616 in environments that can increase the electric conductivity.
- Only operate the P-616 within the permissible ambient conditions and classifications (p. 35).
NOTICE

Reduced lifetime of the piezo actuator due to permanently high voltage!
The permanent application of a high static voltage to piezo actuators leads to a considerable reduction in the lifetime of the piezo ceramic.

- When the P-616 is not used but the electronics remain switched on to ensure temperature stability, discharge the P-616 (p. 25).

NOTICE

Operating voltage too high or incorrectly connected!
Operating voltages that are too high or incorrectly connected can cause damage to the P-616.

- Only operate the P-616 with controllers/drivers and original accessories from PI.
- Do not exceed the operating voltage range (p. 34) for which the P-616 is specified.
- Only operate the P-616 when the operating voltage is properly connected; see "Pin Assignment" (p. 37).

NOTICE

Uncontrolled oscillation!
Oscillation can cause irreparable damage to the P-616. Oscillation is indicated by a humming noise and can be caused by the following:

- A change in the load and/or dynamics requires the servo-control parameters to be adjusted.
- The P-616 is operated near to its resonant frequency.

If you notice oscillation:

- In closed-loop operation, switch off the servo mode immediately.
- In open-loop operation, stop the P-616 immediately.

INFORMATION

The positive direction of motion of the axes is given in the product view (p. 9).

INFORMATION

Sound and vibration (e.g., footfall, knocks) can be transmitted to the P-616 and can affect its performance with regard to position stability.

- Avoid sound and vibration while the P-616 is being operated.
6.2 Operating the P-616

- Follow the instructions in the manual of the controller (p. 11) used for startup and operation of the P-616.

6.3 Discharging the P-616

The P-616 must be discharged in the following cases:

- Before installation
- If the P-616 is not used and the controller remains switched on to ensure temperature stability
- Before demounting (e.g., before cleaning and transporting the P-616 and for modifications)

The P-616 is discharged via the internal discharge resistor of the controller from PI.

Discharging an P-616 that is connected to the controller

In closed-loop operation:

1. Switch off the servo mode on the controller.
2. Set the piezo voltage to 0 V on the controller.

In open-loop operation:

- Set the piezo voltage to 0 V on the controller.

Discharging an P-616 that is not connected to the controller

- Connect the P-616 to the switched-off controller from PI.
7 Maintenance

In this Chapter

General Notes on Maintenance ... 27
Cleaning the P-616 ... 27

7.1 General Notes on Maintenance

NOTICE

Misalignment due to loosening screws!
The P-616 is maintenance-free and achieves its positioning accuracy as a result of the optimum alignment of mechanical components and piezo actuators. Loosened screws cause a loss in positioning accuracy.

➢ Only loosen screws according to the instructions in this manual.
➢ Do not open the P-616.

7.2 Cleaning the P-616

Requirements

✓ You have discharged the piezo actuators of the P-616 (p. 25).
✓ You have disconnected the P-616 from the controller.

Cleaning the P-616

➢ Clean the surfaces of the P-616 with a cloth dampened with a mild cleanser or disinfectant (e.g., isopropyl alcohol).
➢ Do not do any ultrasonic cleaning.
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible causes</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No or limited motion</td>
<td>Cable not connected correctly</td>
<td>Check the cable connections.</td>
</tr>
<tr>
<td>Excessive load</td>
<td></td>
<td>Do not exceed the maximum permissible stress and load capacities according to the specifications (p. 33).</td>
</tr>
<tr>
<td>Zero-point adjustment of the sensor for the following reasons:</td>
<td>Load applied in direction of motion</td>
<td>Perform a zero-point adjustment of the sensor (see controller manual).</td>
</tr>
<tr>
<td></td>
<td>Ambient/operating temperature of the stage far above or below calibration temperature (21°C to 24°C)</td>
<td></td>
</tr>
<tr>
<td>Reduced accuracy</td>
<td>Warping of the base body or the XYZ mounting platform</td>
<td>Only mount the P-616 on surfaces with the following characteristics:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Flatness of at least 100 μm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The thermal expansion properties are similar to those of the P-616 (e.g., surfaces made of aluminum).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only affix loads with the following characteristics on the P-616:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The contact surface of the load has a flatness of at least 100 μm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The thermal expansion properties are similar to those of the P-616 (e.g., loads made of aluminum).</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Issue</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The stage is not connected to the corresponding controller (only with several systems)</td>
<td>➢ Observe the assignment of the devices when several systems are connected. The assignment is indicated on the calibration label of the controller (see rear panel or bottom side), which contains the serial number of the stage to be connected.</td>
</tr>
</tbody>
</table>
| The stage starts oscillating or positions inaccurately | ➢ Servo-control parameters incorrectly set because e.g. the load was changed
1. Immediately switch off the servo mode of the corresponding stage axes.
2. Check the settings of the servo-control parameters on the controller.
3. Adjust the servo-control parameters on the controller according to the load change. |
| Open-loop operation near the resonant frequency | ➢ In open-loop operation, only operate the stage with a frequency that is below the resonant frequency. |

If the problem that occurred with your system is not listed in the table above or cannot be solved as described, contact our customer service department (p. 31).
9 Customer Service

For inquiries and orders, contact your PI sales engineer or send us an email (service@pi.de).

- If you have questions concerning your system, have the following information ready:
 - Product and serial numbers of all products in the system
 - Firmware version of the controller (if available)
 - Version of the driver or the software (if available)
 - Operating system on the PC (if available)
- If possible: Take photographs or make videos of your system that can be sent to our customer service department if requested.

The latest versions of the user manuals are available for download (p. 3) on our website.
10 Technical Data

In this Chapter
Specifications ... 33
Dimensions .. 36
Torque for Stainless Steel Screws (A2-70) ... 37
Pin Assignment .. 37

10.1 Specifications

10.1.1 Data Table

<table>
<thead>
<tr>
<th>Specification</th>
<th>P-616.3C</th>
<th>Unit</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion and positioning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active axes</td>
<td>X, Y, Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel range at -20 to 120 V, open loop</td>
<td>110 / axis</td>
<td>µm</td>
<td>+20 % / -0 %</td>
</tr>
<tr>
<td>Closed-loop travel range</td>
<td>100 / axis</td>
<td>µm</td>
<td>+20 % / -0 %</td>
</tr>
<tr>
<td>Resolution, 1 σ, open loop*</td>
<td>0.3</td>
<td>nm</td>
<td>typ.</td>
</tr>
<tr>
<td>Resolution, 1 σ, closed loop*</td>
<td>0.4</td>
<td>nm</td>
<td>typ.</td>
</tr>
<tr>
<td>Linearity error, for the entire travel range, with digital controller (E-727.3CD)</td>
<td>0.03</td>
<td>%</td>
<td>typ.</td>
</tr>
<tr>
<td>Bidirectional repeatability, 1 σ, 10 % travel range</td>
<td><10</td>
<td>nm</td>
<td>typ.</td>
</tr>
<tr>
<td>Bidirectional repeatability, 1 σ, 100 % travel range</td>
<td><15</td>
<td>nm</td>
<td>typ.</td>
</tr>
<tr>
<td>Sensor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor type</td>
<td>Capacitive sensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stiffness</td>
<td>0.5</td>
<td>N/µm</td>
<td>±10 %</td>
</tr>
<tr>
<td>Resonant frequency X / Y / Z, no load</td>
<td>700</td>
<td>Hz</td>
<td>±10 %</td>
</tr>
<tr>
<td>Resonant frequency with 38 g load X / Y / Z</td>
<td>380</td>
<td>Hz</td>
<td>±20 %</td>
</tr>
<tr>
<td>Resonant frequency with 100 g load X / Y / Z</td>
<td>250</td>
<td>Hz</td>
<td>±20 %</td>
</tr>
<tr>
<td>Push/pull force capacity</td>
<td>15</td>
<td>N</td>
<td>max.</td>
</tr>
<tr>
<td>Maximum permissible torque</td>
<td>0.4</td>
<td>Nm</td>
<td>max.</td>
</tr>
<tr>
<td>Recommended maximum load</td>
<td>300</td>
<td>g</td>
<td>max.</td>
</tr>
</tbody>
</table>
10 Technical Data

<table>
<thead>
<tr>
<th></th>
<th>P-616.3C</th>
<th>Unit</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic type</td>
<td>PICMA® P-885.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical capacitance</td>
<td>1.5 / axis</td>
<td>μF</td>
<td>±20 %</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-20 to 80</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Aluminum, steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>40 × 40 × 40</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Moved mass without load</td>
<td>0.021</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Mass without cable</td>
<td>0.125</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Mass with cable</td>
<td>0.4</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Cable length</td>
<td>1.5</td>
<td>m</td>
<td>±10 mm</td>
</tr>
<tr>
<td>Connection</td>
<td>Sub-D 25W3 (m)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The resolution of PI piezo nanopositioning systems is not limited by friction. Specification as position noise with E-727 controller.

All specifications based on room temperature (22 °C ±3 °C).

10.1.2 Maximum Ratings

P-616 stages are designed for the following operating data:

<table>
<thead>
<tr>
<th>Maximum operating voltage</th>
<th>Maximum operating frequency (unloaded) 1</th>
<th>Maximum power consumption 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20 to +120 V</td>
<td>220 Hz (in X)</td>
<td>4.3 W (per axis)</td>
</tr>
<tr>
<td></td>
<td>220 Hz (in Y)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220 Hz (in Z)</td>
<td></td>
</tr>
</tbody>
</table>

1 To ensure stable operation, the maximum operating frequency has been defined as around one third of the mechanical resonant frequency.

2 The heat that is generated by the piezo actuator during dynamic operation limits the value for maximum power consumption.

Details can be found at the following website:

http://piceramic.com/piezo-technology/properties-piezo-actuators/electrical-operation.html
10.1.3 Ambient Conditions and Classifications

The following ambient conditions and classifications for the P-616 must be observed:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of application</td>
<td>For indoor use only</td>
</tr>
<tr>
<td>Maximum altitude</td>
<td>2000 m</td>
</tr>
<tr>
<td>Air pressure</td>
<td>1100 hPa to 0.1 hPa</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Highest relative humidity 80 % for temperatures up to 31 °C</td>
</tr>
<tr>
<td></td>
<td>Decreasing linearly to 50 % relative humidity at 40 °C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>−20 °C to 80 °C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>−20 °C to 80 °C</td>
</tr>
<tr>
<td>Transport temperature</td>
<td>−25 °C to 85 °C</td>
</tr>
<tr>
<td>Overvoltage category</td>
<td>II</td>
</tr>
<tr>
<td>Protection class</td>
<td>I</td>
</tr>
<tr>
<td>Degree of pollution</td>
<td>1</td>
</tr>
<tr>
<td>Degree of protection according to IEC 60529</td>
<td>IP20</td>
</tr>
</tbody>
</table>
10.2 Dimensions

Dimensions in mm. Note that the decimal places are separated by a comma in the drawings.

Figure 11: P-616.3C

1 Cable exit
10.3 Torque for Stainless Steel Screws (A2-70)

<table>
<thead>
<tr>
<th>Screw size</th>
<th>Minimum torque</th>
<th>Maximum torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>4 Nm</td>
<td>6 Nm</td>
</tr>
<tr>
<td>M5</td>
<td>2.5 Nm</td>
<td>3.5 Nm</td>
</tr>
<tr>
<td>M4</td>
<td>1.5 Nm</td>
<td>2.5 Nm</td>
</tr>
<tr>
<td>M3</td>
<td>0.8 Nm</td>
<td>1.1 Nm</td>
</tr>
<tr>
<td>M2.5</td>
<td>0.3 Nm</td>
<td>0.4 Nm</td>
</tr>
<tr>
<td>M2</td>
<td>0.15 Nm</td>
<td>0.2 Nm</td>
</tr>
<tr>
<td>M1.6</td>
<td>0.06 Nm</td>
<td>0.12 Nm</td>
</tr>
</tbody>
</table>

10.4 Pin Assignment

Piezo and sensor connection Sub-D 25W3 (m)

![Sub-D 25W3 connector (m): Front side with connections](image)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal*</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 inner conductor</td>
<td>Output</td>
<td>Probe sensor signal, channel 2 (nonmoving part of the capacitive sensor)</td>
</tr>
<tr>
<td>A1 outer conductor</td>
<td>GND</td>
<td>Shield of probe sensor signal, channel 2</td>
</tr>
<tr>
<td>A2 inner conductor</td>
<td>Output</td>
<td>Probe sensor signal, channel 3 (nonmoving part of the capacitive sensor)</td>
</tr>
<tr>
<td>A2 outer conductor</td>
<td>GND</td>
<td>Shield of probe sensor signal, channel 3</td>
</tr>
<tr>
<td>A3 inner conductor</td>
<td>Output</td>
<td>Probe sensor signal, channel 1 (nonmoving part of the capacitive sensor)</td>
</tr>
<tr>
<td>A3 outer conductor</td>
<td>GND</td>
<td>Shield of probe sensor signal, channel 1</td>
</tr>
<tr>
<td>1</td>
<td>Input</td>
<td>Target sensor signal, channel 2 (moving part of the capacitive sensor)</td>
</tr>
<tr>
<td>2</td>
<td>Input</td>
<td>Target sensor signal, channel 3 (moving part of the capacitive sensor)</td>
</tr>
</tbody>
</table>
Technical Data

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal*</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground of ID chip, channel 1</td>
</tr>
<tr>
<td>4</td>
<td>Bidirectional</td>
<td>Data line for ID-Chip, channel 1</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground of ID chip, channel 2</td>
</tr>
<tr>
<td>6</td>
<td>Bidirectional</td>
<td>Data line for ID-Chip, channel 2</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Input</td>
<td>Piezo voltage +, channel 3</td>
</tr>
<tr>
<td>9</td>
<td>Input</td>
<td>Piezo voltage +, channel 2</td>
</tr>
<tr>
<td>10</td>
<td>Input</td>
<td>Piezo voltage +, channel 1</td>
</tr>
<tr>
<td>11</td>
<td>Input</td>
<td>Target sensor signal, channel 1 (moving part of the capacitive sensor)</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>Shield of target sensor signal, channel 2</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>Shield of target sensor signal, channel 3</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>Ground of ID chip, channel 3</td>
</tr>
<tr>
<td>17</td>
<td>Bidirectional</td>
<td>Data line for ID-Chip, channel 3</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Input</td>
<td>Piezo voltage –, channel 3</td>
</tr>
<tr>
<td>20</td>
<td>Input</td>
<td>Piezo voltage –, channel 2</td>
</tr>
<tr>
<td>21</td>
<td>Input</td>
<td>Piezo voltage –, channel 1</td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
<td>Shield of target sensor signal, channel 1</td>
</tr>
</tbody>
</table>

* The "-" sign indicates that the corresponding pin has not been assigned.
11 Old Equipment Disposal

In accordance with EU law, electrical and electronic equipment may not be disposed of in EU member states via the municipal residual waste.

Dispose of your old equipment according to international, national, and local rules and regulations.

In order to fulfil its responsibility as the product manufacturer, Physik Instrumente (PI) GmbH & Co. KG undertakes environmentally correct disposal of all old PI equipment made available on the market after 13 August 2005 without charge.

Any old PI equipment can be sent free of charge to the following address:

Physik Instrumente (PI) GmbH & Co. KG
Auf der Roemerstr. 1
D-76228 Karlsruhe, Germany
For the P-616, an EU Declaration of Conformity has been issued in accordance with the following European directives:

Low Voltage Directive
EMC Directive
RoHS Directive

The applied standards certifying the conformity are listed below.
Safety (Low Voltage Directive): EN 61010-1
EMC: EN 61326-1
RoHS: EN 50581